Genetic Interaction of Centrosomin and Bazooka in Apical Domain Regulation in Drosophila Photoreceptor

نویسندگان

  • Geng Chen
  • Alicia K. Rogers
  • Garrett P. League
  • Sang-Chul Nam
چکیده

BACKGROUND Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes' role in photoreceptor morphogenesis. METHODOLOGY/PRINCIPAL FINDINGS Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn's gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs). CONCLUSIONS/SIGNIFICANCE These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulated and Polarized PtdIns(3,4,5)P3 Accumulation Is Essential for Apical Membrane Morphogenesis in Photoreceptor Epithelial Cells

BACKGROUND In a specialized epithelial cell such as the Drosophila photoreceptor, a conserved set of proteins is essential for the establishment of polarity, its maintenance, or both--in Drosophila, these proteins include the apical factors Bazooka, D-atypical protein kinase C, and D-Par6 together with D-Ecadherin. However, little is known about the mechanisms by which such apical factors might...

متن کامل

Role of Spectraplakin in Drosophila Photoreceptor Morphogenesis

BACKGROUND Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the apical membrane domain and adherens junction during Drosophila photoreceptor morphogenesis. It has recently been found that stable microtubules in developing Drosophila photoreceptors were linked to Crb localization. Coordinated interactions between microtubule and actin cytoskeletons are involved ...

متن کامل

Crumbs/DaPKC-Dependent Apical Exclusion of Bazooka Promotes Photoreceptor Polarity Remodeling

BACKGROUND In Drosophila epithelial cells, specification and maintenance of the zonula adherens (za) is crucial to ensure epithelial tissue integrity. This depends on the intertwined function of Bazooka (Baz), Par6-DaPKC, and the Crumbs (Crb)-Stardust (Sdt)-PATJ complex. However, the detailed molecular basis for the interplay between these factors during this process is not fully understood. ...

متن کامل

Distinct roles of Bazooka and Stardust in the specification of Drosophila photoreceptor membrane architecture.

Photoreceptors form during Drosophila pupal development and acquire elaborate membrane structures, including the rhabdomeres and stalk membranes. Here, we show that the development of these cellular structures involves two distinct processes: the establishment of apical-basal polarity that requires Bazooka (Baz), and the regionalization of apical membrane into stalk membranes and rhabdomeres th...

متن کامل

The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila.

Apical constriction is a major mechanism underlying tissue internalization during development. This cell constriction typically requires actomyosin contractility. Thus, understanding apical constriction requires characterization of the mechanics and regulation of actomyosin assemblies. We have analyzed the relationship between myosin and the polarity regulators Par-6, aPKC and Bazooka (Par-3) (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011